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The measurement of CP asymmetries and branch-
ing ratios of B− → DK− [1] decay modes allows a
theoretically-clean extraction of the CKM angle γ =
arg(−VudV

∗
ub/VcdV

∗
cb), a fundamental parameter of the

Standard Model [2]. In these decays the interference be-
tween the tree amplitudes of the b → cūs and b → uc̄s
processes leads to observables that depend on their rela-
tive weak phase (γ), their relative strong phase (δB), and

the magnitude ratio rB =
∣

∣

∣

A(b→u)
A(b→c)

∣

∣

∣. These quantities can

all be extracted from data by combining several experi-
mental observables. This can be achieved in several ways,
from a variety of D decay channels [3–5].

An accurate knowledge of the value of γ is instrumen-
tal in establishing the possible presence of additional non-
Standard Model CP -violating phases in higher-order dia-
grams [6, 7]. Its current determination is based on a com-
bination of several B → DK measurements performed
in e+e− collisions at the Υ(4S) resonance [8–10] and its
uncertainty is between 12 and 30 degrees, depending on
the method [11]. This uncertainty is almost completely
determined by the limited size of the data samples avail-
able, with theoretical uncertainties playing a negligible
role (∼ 1%). The large production of B mesons available
at hadron colliders could offer a unique opportunity to
improve the current experimental determination of the
angle γ. However, the feasibility of this kind of mea-
surement in the larger background conditions of hadronic
collisions has never been demonstrated.

In this paper we describe the first measurement of
the branching fraction ratios and CP asymmetries of
B− → DK− modes performed in hadron collisions, based
on an integrated luminosity of 1 fb−1 of p̄p collisions at√

s = 1.96 TeV collected by the upgraded Collider Detec-
tor (CDF II) at the Fermilab Tevatron. We reconstruct
events where the D meson decays to the flavor-specific
mode K−π+ (D0

f ), or to one of the CP -even modes

K−K+ and π−π+ (DCP+ = (D0+D
0
)/
√

2). From these
modes, the following observables can be defined:

ACP+ =
B(B− → DCP+K−) − B(B+ → DCP+K+)

B(B− → DCP+K−) + B(B+ → DCP+K+)
,

(1)
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RCP+ = 2
B(B− → DCP+K−) + B(B+ → DCP+K+)

B(B− → D0
fK−) + B(B+ → D

0

fK+)
.

(2)
With the assumption of no CP violation in D0 decays,

and neglecting D0−D
0

mixing [12], these quantities are
related to the CKM angle γ by the equations [3]

RCP+ = 1 + r2
B + 2r cos δB cos γ, (3)

ACP+ = 2rB sin δB sin γ/RCP+. (4)

For our measurements we adopt the usual approx-

imation RCP+ ∼ R+

R
, which is valid up to a term

r · |VusVcd/VudVcs| ≃ 0.01 [9], where

R =
B(B− → D0

fK−) + B(B+ → D
0
fK+)

B(B− → D0
fπ−) + B(B+ → D

0
fπ+)

, (5)

R+ =
B(B− → DCP+K−) + B(B+ → DCP+K+)

B(B− → DCP+π−) + B(B+ → DCP+π+)
. (6)

The CDF II detector is a multipurpose magnetic spectrom-
eter surrounded by calorimeters and muon detectors. The
components relevant for this analysis are briefly described
here. A more detailed description can be found elsewhere [13].
Silicon microstrip detectors (SVX II and ISL) [14] and a
cylindrical drift chamber (COT) [15] immersed in a 1.4 T
solenoidal magnetic field allow reconstruction of charged par-
ticles in the pseudorapidity range | η |< 1.0 [16]. The SVX
II detector consists of microstrip sensors arranged in five con-
centric layers with radii between 2.5 and 10.6 cm, divided into
three contiguous sections along the beam direction z, for a to-
tal length of 90 cm. The two additional silicon layers of the
ISL help to link tracks in the COT to hits in the SVX II. The
COT has 96 measurement layers between 40 and 137 cm in
radius, organized into alternating axial and ±2◦ stereo super-
layers, and provides a resolution on the transverse momentum
of charged particles σpT

/pT ≃ 0.15% pT /(GeV/c). The spe-
cific energy loss by ionization (dE/dx ) of charged particles in
the COT can be measured from the collected charge, which
is encoded in the output pulse-width of each sense wire.

Candidate events for this analysis are selected by a three-
level trigger system. At level 1, charged particles are recon-
structed in the COT axial superlayers by a hardware pro-
cessor, the extremely fast tracker (XFT) [17]. Two oppo-
sitely charged particles are required, with transverse momenta
pT ≥ 2 GeV/c and scalar sum pT1 + pT2 ≥ 5.5 GeV/c. At
level 2, the silicon vertex trigger (SVT) [18] associates SVX
II r − φ position measurements with XFT tracks. This pro-
vides a precise measurement of the track impact parameter,
d0, which is defined as the distance of closest approach to
the beam line. The resolution of the impact parameter mea-
surement is 50 µm for particles with pT of about 2 GeV/c,
including a ≈ 30 µm contribution due to the transverse beam
size, and improves for higher transverse momenta. We select
B hadron candidates by requiring two SVT tracks with 120
≤ d0 ≤ 1000 µm. To reduce background from light-quark jet
pairs, the two trigger tracks are required to have an opening
angle in the transverse plane 2◦ ≤ ∆φ ≤ 90◦, and to satisfy
the requirement Lxy > 200 µm, where Lxy is defined as the
distance in the transverse plane from the beam line to the two-
track vertex, projected onto the two-track momentum vector.
The level 1 and 2 trigger requirements are then confirmed at
trigger level 3, where the event is fully reconstructed.
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Reconstruction of B− hadrons begins by looking for a track
pair that is compatible with a D0 decay. The invariant mass
(MD) of the pair is required to be close to the nominal D0

mass (1.8 < MD < 1.92 GeV/c2). This is checked separately
for each of the four possible mass assignments to the two
outgoing particles: K+π−, K−π+, K+K− and π+π−. The
D0 candidate is combined with a negative charged track in
the event with pT > 0.4 GeV to form B− candidates. A
kinematic fit of the decay is performed by constraining the
two tracks forming the D candidate to a common vertex and
to the nominal D0 mass, the D candidate and the remaining
track to a separate vertex, and the reconstructed momentum
of the B− candidate to point back to the luminous region in
the transverse plane.

To complete the selection, further requirements are ap-
plied on additional observables: the impact parameter (dB)
of the reconstructed B candidate relative to the beamline;
the isolation of the B candidate (IB) [19]; the goodness of
fit of the decay vertex (χ2

B); the transverse distance of the
D, both relative to the beam (Lxy(D)) and to the B vertex
(LxyB(D)), and the significance of the B hadron decay length
(Lxy(B)/σLxy(B)). We chose the requirement LxyB(D) > 100
µm to reduce contamination from the non-resonant mode
B+ → K+K−K+, in which all tracks come from a common
decay vertex. The threshold values for all other requirements,
whose purpose is to reduce combinatoric background, were
determined by an unbiased optimization procedure aimed at
achieving the best resolution on ACP+. This resolution was
parameterized as a function of the expected signal yield S
and background level B, by performing repeated fits on sam-
ples of simulated data extracted from the same multidimen-
sional distribution used as likelihood function in the fit (Eq.
7). For each choice of thresholds, the signal S was deter-
mined by rescaling the number of observed B− → D0

fπ−,
and the background B was determined from the upper mass
sidebands of each data sample (5.4 < MB < 5.8 GeV/c2).
Based on this optimization procedure, we adopted the follow-
ing set of requirements: IB > 0.65, χ2

B < 13, dB < 70 µm,
Lxy(B)/σLxy(B) > 12, and Lxy(D) > 400 µm.

For every B− → Dh− candidate (where h is a kaon or
a pion), a nominal invariant mass is evaluated by assigning
the charged pion mass to the particle h− coming from the
B decay. The distributions obtained for the three modes
of interest (D → Kπ, KK or ππ) are reported in Fig. 1.
A clear B− → Dπ− signal is seen in each. Events from
B− → DK− decays are expected to form much smaller and
wider peaks in these plots, located about 50 MeV/c2 below

the B− → Dπ− peaks, and as such cannot be resolved. The
dominant backgrounds are random track combinations that
meet the selection requirements (combinatorial background),
mis-reconstructed physics background such as B− → D∗0π−

decay, and, in the D0 → KK final state, the non-resonant
B− → K+K−K− decay, as determined by a study performed
on CDF simulation.

We used an unbinned likelihood fit, exploiting kinematic
and particle identification information from the measurement
of dE/dx in a similar way to [20], to separate statistically the
B− → DK− contributions from the B− → Dπ− signals and
from the combinatorial background. To make best use of the
available information, we fit the three modes simultaneously
using a single likelihood function, to take advantage of the
presence of parameters common to the three modes.

The likelihood function is

L =
∏

i

(1 − b)
∑

j

fjL
kin
j LPID

j + bLkin
c LPID

c (7)

where c labels combinatorial background quantities, b is the
combinatorial background fraction, and Lkin and LPID are de-
fined below. The index j runs over the modes B− → DK−,
B− → Dπ−, non resonant B− → K+K−K− and B− →
D∗0π− (where a soft γ or π0 from the D∗0 is undetected) and
fj are the fractions to be determined by the fit. The fraction
of the physics background (B− → D∗0π−) with respect to
the signal is common to the three decays and the fraction of
the B− → DCP+π− is common to the two DCP modes. As
determined from simulation, these modes are the only signif-
icant contributions within the mass range 5.17 < M < 5.60
GeV/c2 chosen for our fit.

Kinematic information is given by three loosely correlated
observables: (a) the mass MDπ, calculated by assigning the
pion mass to the track from the B decay; (b) the momentum
imbalance α, defined as

α = 1 − ptr/pD > 0 if ptr < pD;

α = −(1 − pD/ptr) ≤ 0 if ptr ≥ pD;

where ptr is the momentum of the track from the B candidate;
and (c) the scalar sum of the D momentum and the momen-
tum of the track from the B candidate (ptot = ptr +pD). The
above variables uniquely identify the invariant mass MDK

evaluated with a kaon mass assignment to the track from the
B decay, through the (exact) relations [22]

M2
DK = M2

Dπ + m2
π − m2

K + 2

√

m2
D +

p2
tot

(2 − α)2





√

m2
π +

(

ptot(1 − α)

2 − α

)2

−

√

m2
K +

(

ptot(1 − α)

2 − α

)2





if α > 0;

M2
DK = M2

Dπ + m2
π − m2

K + 2

√

m2
D +

(

ptot(1 + α)

2 + α

)2
(

√

(m2
π +

(

ptot

2 + α

)2

−

√

m2
K +

(

ptot

2 + α

)2

)

if α ≤ 0.
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FIG. 1: Invariant mass distributions of B− → Dπ− candidates for each reconstructed decay mode. The pion mass is assigned
to the charged track from the B candidate decay vertex. The projections of the common likelihood fit (see text) are overlaid
for each mode.

Using these variables, we can write Lkin
j = Pj(MDπ|α, ptot) ·

Pj(α, ptot) and LPID
j = Pj(dE/dx|α, ptot), where Pj is the

probability density function for decay mode j. Distributions
of the kinematic variables for the signals are obtained from
samples of events from the full CDF simulation, while for the
combinatorial background they are obtained from the mass
sidebands of data. The shape of the mass distribution as-
signed to each signal process (B− → Dπ− and B− → DK−

decays) have been modeled in detail from a dedicated study
including the effect of final state QED radiation [21]. The
simulation results were tested on high-statistics data samples
of D0 decays, in order to ensure the reliability of the extrac-
tion of the DK− component in the vicinity of the larger Dπ−

peak. Exponential functions were used to model the mass
distribution of combinatorial background for each mode. The
normalization and the slope of these functions are indepen-
dently determined in the maximum likelihood fit. The Par-
ticle IDentification (PID) model of the combinatorial back-
ground allows for pion and kaon components, which are free
to vary in the fit.

A large sample of D∗+ → D0(→ K−π+)π+ decays was
used to calibrate the dE/dx response of the detector to kaons
and pions, using the charge of the pion in the D∗+ decay to
determine the identity of the D0 decay products. The cali-
bration includes the dependence of the shape and the average
of the response curve on particle momentum, and the shape
of the distribution of common-mode fluctuations. The cali-
brated dE/dx information provides a 1.5 σ separation power
between pion and kaon particles of pT > 2 GeV/c. Uncer-
tainties on the calibration parameters are included in the final
systematic uncertainty of ACP+ and RCP+ [22].

The B− → DK− and B− → Dπ− signal event yields ob-
tained from the fit to the data are reported in Table I. The
uncorrected values of the double ratio of branching fractions
RCP+ and of the CP asymmetry ACP+ obtained from the fit
are RCP+ = 1.27 ± 0.24 and ACP+ = 0.39 ± 0.17. In the fit,
RCP+ and ACP+ are functions of the fractions (fj in equation
7) and the total number of events in each subsample.

In addition to the projections of Fig. 1, we performed a
check of the goodness of the fit by imposing requirements on
dE/dx to suppress the B− → Dπ− component and make the
B− → DK− more visible. Figure 2 shows the fit projection

onto the invariant mass variable for the kaon-enriched sam-
ple for the two DCP modes. These projections show good
agreement between the fit and the data (p-value ∼ 0.95).

Some corrections are needed to convert our fit results into
measurements of the parameters of interest. First, we correct
for small biases in the fit procedure itself, as measured by re-
peated fits on simulated samples: δ(RCP+) = −0.027 ± 0.005
and δ(ACP+) = 0.015±0.003. These biases are independent of
the true values of ACP+ and RCP+ used in the simulated sam-
ples. RCP+ does not need any further corrections because de-
tector effects cancel in the double ratio of branching fractions.
The direct CP-asymmetry ACP+ needs to be corrected for the
different probability for K+ and K− mesons to interact with
the tracker material. This effect is reproduced well by CDF
II detector simulation (traced by GEANT [23]), which yields

an estimate ǫ(K+)

ǫ(K−)
= 1.0178± 0.0023(stat)± 0.0045(syst) [24]

which has been verified by measurements on data [25].
The final results are

RCP+ = 1.30 ± 0.24(stat), (8)

ACP+ = 0.39 ± 0.17(stat), (9)

where ACP+ was corrected using the following equation:

ACP+ =
N(B− → D0

CP+K−) ǫ(K+)

ǫ(K−)
− N(B+ → D0

CP+K+)

N(B− → D0
CP+K−) ǫ(K+)

ǫ(K−)
+ N(B+ → D0

CP+K+)
.

(10)
The systematic uncertainties are shown in Table II. The

dominant contributions are uncertainty on the dE/dx calibra-
tion and parameterization, uncertainty on the kinematics of
the combinatorial background, and uncertainty on the physics
background (B− → D∗0π−) mass distribution. Smaller con-
tributions are assigned for trigger efficiencies, assumed B−

mass input in the fit [26] and kinematic properties of signal
and physics background.

In summary, we have measured the double ratio of CP -
even to flavor eigenstate branching fractions (Eq. 2) RCP+ =
1.30 ± 0.24(stat) ± 0.12(syst) and the direct CP asymmetry
(Eq. 1) ACP+ = 0.39 ± 0.17(stat) ± 0.04(syst). These results
can be combined with other B− → DK− decay parameters
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TABLE I: B− → DK− and B− → Dπ− event yields obtained from the fit to the data.

D mode B
+

→ Dπ
+

B
−

→ Dπ
−

B
+

→ DK
+

B
−

→ DK
−

B
+

→ [h−
h
+]K+

B
−

→ [h−
h
+]K−

K−π+ 3769 ± 68 3763 ± 68 250 ± 26 266 ± 27 - -
K+K− 381 ± 25 399 ± 26 22 ± 8 49 ± 11 3 ± 1 3 ± 1
π+π− 101 ± 13 117 ± 14 6 ± 6 14 ± 6 - -
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FIG. 2: Invariant mass distributions of B− → Dπ− candidates for each reconstructed decay mode. The pion mass is assigned
to the prompt track from the B decay. A requirement on the PID variable was applied to suppress the Dπ component and
favor the DK component. The projections of the likelihood fit for each mode are overlaid.

to improve the determination of the CKM angle γ. These
measurements are performed here for the first time in hadron
collisions, are in agreement with previous measurements from
BaBar (RCP+ = 1.06±0.10±0.05, ACP+ = 0.27±0.09±0.04
in 348 fb−1 of integrated luminosity [9]) and Belle (RCP+ =
1.13±0.16±0.08, ACP+ = 0.06±0.14±0.05 in 250 fb−1 of in-
tegrated luminosity [10]) and have comparable uncertainties.
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TABLE II: Summary of systematic uncertainties.

Source RCP+ ACP+

dE/dx model 0.056 0.030
D0∗π mass model 0.025 0.006

Input B− mass to the fit 0.004 0.002
Combinatorial background mass model 0.020 0.001
Combinatorial background kinematics 0.100 0.020

Dπ kinematics 0.002 0.001
DK kinematics 0.002 0.004
D0∗π kinematics 0.004 0.002

Fit bias 0.005 0.003
Total (sum in quadrature) 0.12 0.04
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